Search results

Search for "solid-phase epitaxy" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • heteroepitaxial growth, it may be considered valid also for solid-phase epitaxy, which occurs in our system (Mn wetting layer on Ge), since the key role in the process is the mechanism of diffusion of adatoms (i.e., Mn) occurring also during the annealing process. According to this model, the optimal island shape
PDF
Album
Full Research Paper
Published 28 Apr 2021

Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size

  • Martin Schilling,
  • Paul Ziemann,
  • Zaoli Zhang,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2016, 7, 591–604, doi:10.3762/bjnano.7.52

Graphical Abstract
  • transmission electron microscopy (HRTEM); nanoparticles; reflection high-energy electron diffraction (RHEED); solid-phase epitaxy; texture; Introduction Due to their attractive catalytic properties for oxygen reduction reactions (ORR) [1][2] as well as their high magnetocrystalline anisotropy energy density
  • annealing at 460 °C for 30 min and 600 °C for 45 min, symmetric streaks are observed in Figure 5b and Figure 5c, respectively, proving solid phase epitaxy [31]. It should be noted that due to the high surface sensitivity of RHEED and the film thickness of 3 nm, the patterns can exclusively be assigned to
PDF
Album
Full Research Paper
Published 21 Apr 2016
Other Beilstein-Institut Open Science Activities